

Microbiological aspects of cleaning validation for sterile and not sterile process. Process aligned with PAT and QbD guidelines and concepts

тм

Gilberto Dalmaso

gdalmaso@pmeasuring.com

Confidential and proprietary

Pharmaceutical processes

Non sterile production

- API
- Tablets
- Granules
- Syrups
- Topical (lotions, creams, ointments, etc.)

Critical Non sterile production

- Aerosol
- Nasal spray
- Powder inhalers

Pharmaceutical processes

Sterile production

- Injections
- Ophthalmic preparations
- Irrigations solutions
- Hemodialysis solutions
- Topicals (for open wounds or critical applications)
- Radiopharmaceuticals
- Cell factories
- Compounding centers

Sterile products

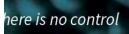
Non parenteral

- Eyes drops
- Topicals (creams, lotions, ointments, gauze)
- Irrigations solutions

Parenteral

- Ampoules
- Vials
- Bottles
- Syringes
- Bags

Two categories of sterile products:


- those that can be sterilized in final container (terminally sterilized)
- those that cannot be terminally sterilized and must be aseptically prepared

Aseptic Processes Steps

- Primary container washing
- Primary container depyrogenation/sterilization
- Compounding (product preparation and filtration)
- Filling and plugging
- Lyophilization
- Capping
- External washing (optional)
- Visual inspection
- Labeling
- Packaging

FDA Initiatives - Innovation

In the beginning in 2002, the FDA recognized the need for the pharma industry to be more innovative. Therefore, it launched:

- A Critical Path Initiative
- Pharmaceutical Quality for the 21st Century A Risk Based Approach
- Quality by Design (QbD)
- Process Analytical Technology (PAT)

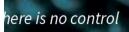
The Goal of all is to modernize and improve the quality of pharmaceutical manufacturing processes – encourage industry to implement risk-based, continuous, real time quality assurance

Definitions:

<u>Quality</u> – "the suitability of either a drug substance or drug product for its intended use" – ICH Q8

<u>Quality by design</u> – uses process understanding to deliver product with the desired critical quality attributes.

<u>Process understanding</u> – in-depth knowledge of factors affecting a product's critical quality attributes (see PAT guidance).


<u>Design Space</u> – "the multidimensional combination and interaction of input variables and process parameters.... demonstrated to provide assurance of quality" – ICH Q8

here is no control

FDA's View on Quality by Design (QbD) In a Quality-by-Design system:

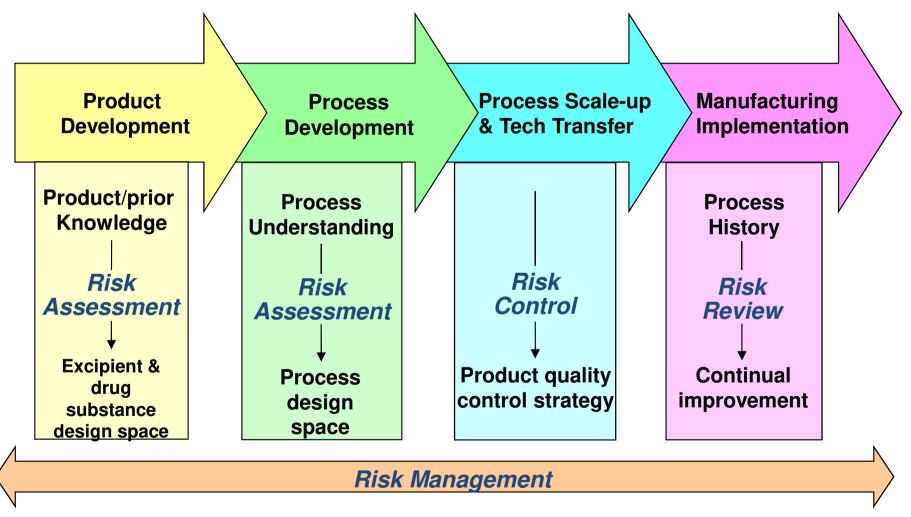
- •The product is designed to meet patient requirements
- •The process is designed to consistently meet product critical quality attributes
- •The impact of starting materials and process parameters on product quality is understood
- •Critical sources of process variability are identified and controlled
- •The process is continually monitored and updated to assure consistent quality over time

A systematic approach to development that begins with predefined objectives and emphasizes <u>product</u> and <u>process understanding</u> and <u>process control</u>, based on <u>sound science</u> and <u>quality risk management</u>.


(ICH Q8(R), step 2)

Quality by Design is:

- A systems for designing, analysis, and controlling manufacturing through <u>timely measurements</u> (i.e.during processing) of *critical quality parameters* (CQP) and performance attributes of raw and in-process materials and processes (CPP) with the goal of ensuring final product quality.
- It is important to note that the term analytical in QbD is viewed broadly to include <u>chemical</u>, <u>physical</u>, <u>microbiological</u>, mathematical, and risk analysis conducted in an integrated manner.



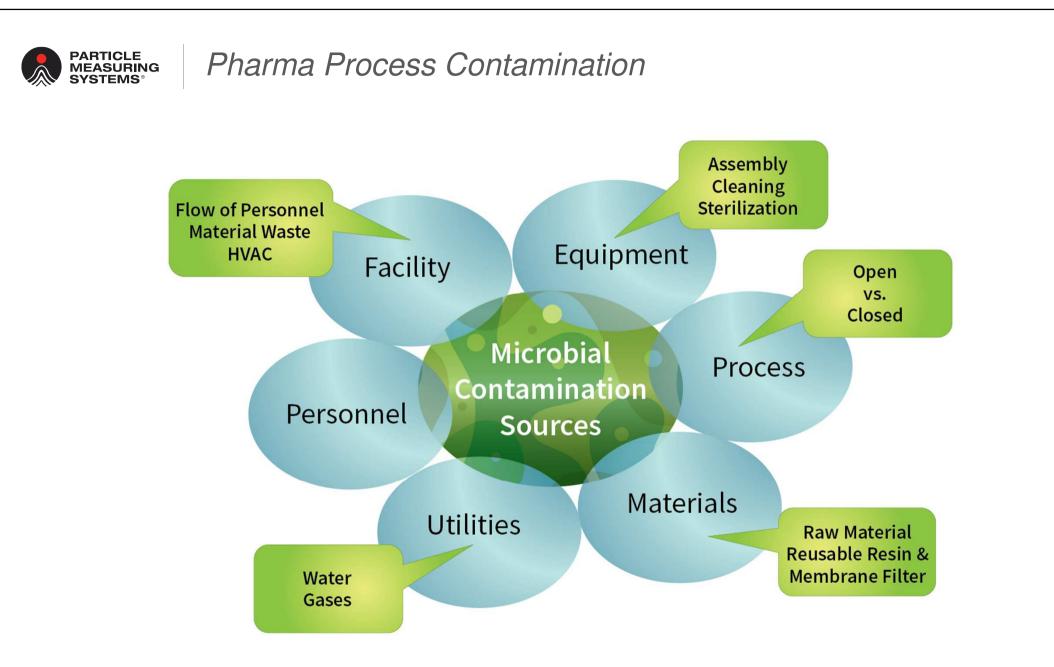
Quality by Design (QbD) – A Systematic Approach to Pharmaceutical Development and Manufacturing

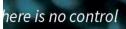
Aspects	Traditional	QbD
Pharmaceutical Development	Empirical ; typically univariate experiments	Systematic; multivariate experiments
Manufacturing Process	Fixed	Adjustable within design space; opportunities for innovation (PAT)
Process Control	In-process testing for go/no-go; offline analysis	PAT tools utilized for feedback and feed forward controls
Product Specification	Primary means of control; based on batch data at time of submission	Part of the overall quality control strategy; based on desired product performance (safety and efficacy)
Control Strategy	Mainly by intermediate and end product testing	Risk-based ; controls shifted upstream; <u>reducing product</u> <u>variability;</u> real-time release
Lifecycle Management	Reactive to problems & OOS; postapproval changes needed	Continual improvement facilitated

Role of Quality Risk Management in Development & Manufacturing

Quality by Design Implementation

"Quality by Design" implementation

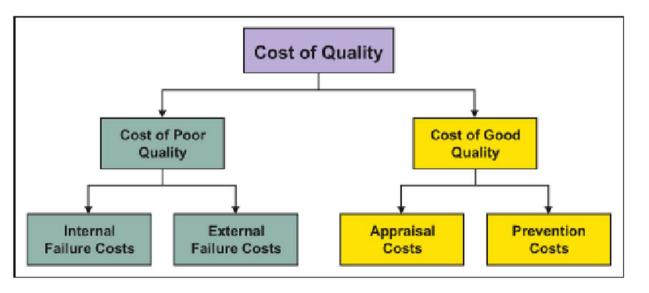

- ICH Q9, ICH Q10 and the new FDA guideline for Process Validation
- PROCESS DESIGN
 - Identification of CQA (Material & Components, Intermediates Critical Quality Attribute),
 QCPP (Quality Critical Process Parameters) through Process Understanding and Risk Analysis Tools


PROCESS QUALIFICATION

- Development and validation of RMM (sampling tools + rapid/advance measuring systems) for identified CQA and QCPP
- Real Time Release of the Drug Product must be on the basis of microbial control results obtained in CQA and QCPP

PROCESS VERIFICATION in continuous

Process Verification must be defined in the RTR strategy through periodical trend evaluation



The Cost of Quality

- The Cost of Quality is the sum of four cumulative types of costs:
 - Appraisal, Detection, Internal Failure, External Failure
- The Cost of Poor Quality is the cost associated with producing defects, which includes internal failure costs and external failure costs.


here is no control

Confidential and proprietary

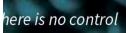
- FDA quality initiatives will lead to a fundamental paradigm shift in pharmaceutical manufacturing:
 - Quality control strategies based on product knowledge and process understanding
 - Industry held accountable for ensuring product quality
 - Management of some CMC changes based on clearly defined and agreed upon risk-based criteria without additional regulatory filing
 - A more scientific and risk-based approach regulatory oversight

Microbiological aspects of cleaning validation for pharma process

Without measurement there is no control

Confidential and proprietary

• Chemical Cleaning of the environment vs. cleaning of process (product contact) materials.


here is no control

- Microbiological Cleaning
- Designing for Cleanability and Contamination Control
- Validation Acceptance Criteria

Cleaning an isolator compared to cleaning a clean room - I

- There are no real differences between an isolator and a clean room regarding cleaning of product contact surfaces.
- The basic principles used in calculating cleaning acceptance criteria are no different for isolator-based processing than for a clean room.

Cleaning an isolator compared to cleaning a clean room- II

- Cleaning of non-product contact surfaces in an isolator are also generally similar to clean room aseptic operations.
- In both cases the environment is being cleaning to a required level of cleanliness to meet a defined safety objective.
- Generally, for most products visually clean is a suitable acceptance criterion for environmental cleaning.
- For products with special attributes in terms of toxicity, teratogenicity, carcinogenicity or simply pharmacological activity defined levels of cleanliness may be required.

Possible Non-Product Contact Cleaning Validation Criteria

- Visually clean- suitable for many products, particularly those with no special employee or environmental exposure concerns
- Clean to safe level for personnel contact without additional safety measures- such as protective clothing or equipment.
- Establish limits and validate in a manner analogous to product contact parts- necessary only when extreme cleanliness requirements exist.

- Disinfection as we know it in clean rooms is not required for isolators
 decontamination will eliminate bioburden.
- Surfaces should be visually clean and dry at the end of changeover activities.
- Cleaning with particle free wipes and mild cleaning solutions is adequate. Solvents or other disinfectants not routinely required.
- Deeper cleaning is generally required after initial isolator installation and assembly.

- Bioburden Control in isolators is straightforward-isolators are inherently difficult environments for microbial colonization.
- Provided the isolator is clean and dry proliferation of microorganisms will not occur.
- Spills of media in validation or media residues from monitoring should be removed quickly and effectively.

- Smooth polished surfaces impervious to cleaning process
- Sloped floor-typically ~a 1:20 slope-with drains at all low points
- Avoid or at least minimize flat ledges and surfaces
- Minimal use of absorbent materials
- Maximum use of disposable items
- Protected location for filters
- Easy access and inspection of all locations to be cleaned
- Maintenance & adjustments made externally
- Cleaning between double glazing panels should be considered.

- Automatic C-I-P has been successfully implemented, but must consider protection of filters, and sensitive electronics.
- Manual spray-wands are frequently used in lieu of full automatic C-I-P.
- Clean water is the most common cleaning agent, other agents are necessary only of material to be cleaned is not water soluble.

- Containment only prepare, use, <u>CLEAN</u>
- Aseptic & Containment prepare, <u>DECONTAMINATE</u>, use, <u>CLEAN</u>
- Aseptic only prepare, <u>DECONTAMINATE</u>, use, clean. Depending upon the application, the criticality of the cleaning process shifts relative to the use of the system.
- Decontamination can be considered a very well controlled type of microbiological cleaning.

- Use product knowledge to develop pragmatic acceptance criteria. Exposure level data, both short and long term can be used in risk analysis and criteria setting.
- Focus on the cleaning process- suitability of analytical method as well as process criteria such as flow rates etc. must be evaluated.
- Reliability and reproducibility of the process must be evaluated.
- Consider both eventful and uneventful operation. Emergency planning is a must in critical containment applications

Use good science and engineering- Be Practical!

- Avoid the tendency to over complicate in design, cleaning process and validation- design or validation targets that can't be met you will ensure failure.
- Avoid the tendency to think that every activity we undertake in isolators must be perfect- perfection is not attainable! Develop scientifically sound specifications and design and validate to them.
- Always develop a rationale for procedures and validation approaches
- Ensure that your rationale is reviewed by all relevant disciplines within your organization.

Cleaning validation

PURPOSE

- To provide guidance on performing cleaning validation exercises
- To provide rationales, procedures and acceptance criteria in the definition of a cleaning validation protocols
- To ensure that all cleaning procedure are formally validated
- To provide assurance that any contaminant can be removed to the level defined in the acceptance criteria
- To ensure a satisfactory removal of cleaning agents from contact surfaces

Cleaning validation

SAMPLING METHOD

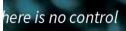
- Sampling operation must be defined in procedures
- The following 3 sampling methods are generally used to measure the effectiveness of cleaning procedures:
 - Direct surface swabbing ("swab")
 - Rinse solution analysis ("rinse")
 - Preparation of a subsequent batch ("placebo")

[If placebo testing is used it should be carried out alongside either swab or rinse testing].

Cleaning validation

ANALYTICAL METHODS

- The analytical method must be validated.
- The analytical method must be sensitive and the limit of quantization must be determined.
- The efficiency of the recovery of the sampling method must be assessed.
- The swab storage conditions and stability must be assessed



Final Thoughts:

- 1. Begin with the end in mind
- 2. You be the expert
- **3. It's O.K. to take some chances in process** development
- 4. Monitor and improve

"When you're done improving, you're done."

-Bo Schembechler Former University of Michigan Head Football Coach

Without measurement there is no control

Questions?

Gilberto Dalmaso

gdalmaso@pmeasuring.com

Confidential and proprietary